You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
875 lines
25 KiB
875 lines
25 KiB
1 year ago
|
[![Build Status](https://secure.travis-ci.org/kriskowal/q.svg?branch=master)](http://travis-ci.org/kriskowal/q)
|
||
|
[![CDNJS](https://img.shields.io/cdnjs/v/q.js.svg)](https://cdnjs.com/libraries/q.js)
|
||
|
|
||
|
<a href="http://promises-aplus.github.com/promises-spec">
|
||
|
<img src="http://kriskowal.github.io/q/q.png" align="right" alt="Q logo" />
|
||
|
</a>
|
||
|
|
||
|
If a function cannot return a value or throw an exception without
|
||
|
blocking, it can return a promise instead. A promise is an object
|
||
|
that represents the return value or the thrown exception that the
|
||
|
function may eventually provide. A promise can also be used as a
|
||
|
proxy for a [remote object][Q-Connection] to overcome latency.
|
||
|
|
||
|
[Q-Connection]: https://github.com/kriskowal/q-connection
|
||
|
|
||
|
On the first pass, promises can mitigate the “[Pyramid of
|
||
|
Doom][POD]”: the situation where code marches to the right faster
|
||
|
than it marches forward.
|
||
|
|
||
|
[POD]: http://calculist.org/blog/2011/12/14/why-coroutines-wont-work-on-the-web/
|
||
|
|
||
|
```javascript
|
||
|
step1(function (value1) {
|
||
|
step2(value1, function(value2) {
|
||
|
step3(value2, function(value3) {
|
||
|
step4(value3, function(value4) {
|
||
|
// Do something with value4
|
||
|
});
|
||
|
});
|
||
|
});
|
||
|
});
|
||
|
```
|
||
|
|
||
|
With a promise library, you can flatten the pyramid.
|
||
|
|
||
|
```javascript
|
||
|
Q.fcall(promisedStep1)
|
||
|
.then(promisedStep2)
|
||
|
.then(promisedStep3)
|
||
|
.then(promisedStep4)
|
||
|
.then(function (value4) {
|
||
|
// Do something with value4
|
||
|
})
|
||
|
.catch(function (error) {
|
||
|
// Handle any error from all above steps
|
||
|
})
|
||
|
.done();
|
||
|
```
|
||
|
|
||
|
With this approach, you also get implicit error propagation, just like `try`,
|
||
|
`catch`, and `finally`. An error in `promisedStep1` will flow all the way to
|
||
|
the `catch` function, where it’s caught and handled. (Here `promisedStepN` is
|
||
|
a version of `stepN` that returns a promise.)
|
||
|
|
||
|
The callback approach is called an “inversion of control”.
|
||
|
A function that accepts a callback instead of a return value
|
||
|
is saying, “Don’t call me, I’ll call you.”. Promises
|
||
|
[un-invert][IOC] the inversion, cleanly separating the input
|
||
|
arguments from control flow arguments. This simplifies the
|
||
|
use and creation of API’s, particularly variadic,
|
||
|
rest and spread arguments.
|
||
|
|
||
|
[IOC]: http://www.slideshare.net/domenicdenicola/callbacks-promises-and-coroutines-oh-my-the-evolution-of-asynchronicity-in-javascript
|
||
|
|
||
|
|
||
|
## Getting Started
|
||
|
|
||
|
The Q module can be loaded as:
|
||
|
|
||
|
- A ``<script>`` tag (creating a ``Q`` global variable): ~2.5 KB minified and
|
||
|
gzipped.
|
||
|
- A Node.js and CommonJS module, available in [npm](https://npmjs.org/) as
|
||
|
the [q](https://npmjs.org/package/q) package
|
||
|
- An AMD module
|
||
|
- A [component](https://github.com/component/component) as ``microjs/q``
|
||
|
- Using [bower](http://bower.io/) as `q#^1.4.1`
|
||
|
- Using [NuGet](http://nuget.org/) as [Q](https://nuget.org/packages/q)
|
||
|
|
||
|
Q can exchange promises with jQuery, Dojo, When.js, WinJS, and more.
|
||
|
|
||
|
## Resources
|
||
|
|
||
|
Our [wiki][] contains a number of useful resources, including:
|
||
|
|
||
|
- A method-by-method [Q API reference][reference].
|
||
|
- A growing [examples gallery][examples], showing how Q can be used to make
|
||
|
everything better. From XHR to database access to accessing the Flickr API,
|
||
|
Q is there for you.
|
||
|
- There are many libraries that produce and consume Q promises for everything
|
||
|
from file system/database access or RPC to templating. For a list of some of
|
||
|
the more popular ones, see [Libraries][].
|
||
|
- If you want materials that introduce the promise concept generally, and the
|
||
|
below tutorial isn't doing it for you, check out our collection of
|
||
|
[presentations, blog posts, and podcasts][resources].
|
||
|
- A guide for those [coming from jQuery's `$.Deferred`][jquery].
|
||
|
|
||
|
We'd also love to have you join the Q-Continuum [mailing list][].
|
||
|
|
||
|
[wiki]: https://github.com/kriskowal/q/wiki
|
||
|
[reference]: https://github.com/kriskowal/q/wiki/API-Reference
|
||
|
[examples]: https://github.com/kriskowal/q/wiki/Examples-Gallery
|
||
|
[Libraries]: https://github.com/kriskowal/q/wiki/Libraries
|
||
|
[resources]: https://github.com/kriskowal/q/wiki/General-Promise-Resources
|
||
|
[jquery]: https://github.com/kriskowal/q/wiki/Coming-from-jQuery
|
||
|
[mailing list]: https://groups.google.com/forum/#!forum/q-continuum
|
||
|
|
||
|
|
||
|
## Tutorial
|
||
|
|
||
|
Promises have a ``then`` method, which you can use to get the eventual
|
||
|
return value (fulfillment) or thrown exception (rejection).
|
||
|
|
||
|
```javascript
|
||
|
promiseMeSomething()
|
||
|
.then(function (value) {
|
||
|
}, function (reason) {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
If ``promiseMeSomething`` returns a promise that gets fulfilled later
|
||
|
with a return value, the first function (the fulfillment handler) will be
|
||
|
called with the value. However, if the ``promiseMeSomething`` function
|
||
|
gets rejected later by a thrown exception, the second function (the
|
||
|
rejection handler) will be called with the exception.
|
||
|
|
||
|
Note that resolution of a promise is always asynchronous: that is, the
|
||
|
fulfillment or rejection handler will always be called in the next turn of the
|
||
|
event loop (i.e. `process.nextTick` in Node). This gives you a nice
|
||
|
guarantee when mentally tracing the flow of your code, namely that
|
||
|
``then`` will always return before either handler is executed.
|
||
|
|
||
|
In this tutorial, we begin with how to consume and work with promises. We'll
|
||
|
talk about how to create them, and thus create functions like
|
||
|
`promiseMeSomething` that return promises, [below](#the-beginning).
|
||
|
|
||
|
|
||
|
### Propagation
|
||
|
|
||
|
The ``then`` method returns a promise, which in this example, I’m
|
||
|
assigning to ``outputPromise``.
|
||
|
|
||
|
```javascript
|
||
|
var outputPromise = getInputPromise()
|
||
|
.then(function (input) {
|
||
|
}, function (reason) {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
The ``outputPromise`` variable becomes a new promise for the return
|
||
|
value of either handler. Since a function can only either return a
|
||
|
value or throw an exception, only one handler will ever be called and it
|
||
|
will be responsible for resolving ``outputPromise``.
|
||
|
|
||
|
- If you return a value in a handler, ``outputPromise`` will get
|
||
|
fulfilled.
|
||
|
|
||
|
- If you throw an exception in a handler, ``outputPromise`` will get
|
||
|
rejected.
|
||
|
|
||
|
- If you return a **promise** in a handler, ``outputPromise`` will
|
||
|
“become” that promise. Being able to become a new promise is useful
|
||
|
for managing delays, combining results, or recovering from errors.
|
||
|
|
||
|
If the ``getInputPromise()`` promise gets rejected and you omit the
|
||
|
rejection handler, the **error** will go to ``outputPromise``:
|
||
|
|
||
|
```javascript
|
||
|
var outputPromise = getInputPromise()
|
||
|
.then(function (value) {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
If the input promise gets fulfilled and you omit the fulfillment handler, the
|
||
|
**value** will go to ``outputPromise``:
|
||
|
|
||
|
```javascript
|
||
|
var outputPromise = getInputPromise()
|
||
|
.then(null, function (error) {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
Q promises provide a ``fail`` shorthand for ``then`` when you are only
|
||
|
interested in handling the error:
|
||
|
|
||
|
```javascript
|
||
|
var outputPromise = getInputPromise()
|
||
|
.fail(function (error) {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
If you are writing JavaScript for modern engines only or using
|
||
|
CoffeeScript, you may use `catch` instead of `fail`.
|
||
|
|
||
|
Promises also have a ``fin`` function that is like a ``finally`` clause.
|
||
|
The final handler gets called, with no arguments, when the promise
|
||
|
returned by ``getInputPromise()`` either returns a value or throws an
|
||
|
error. The value returned or error thrown by ``getInputPromise()``
|
||
|
passes directly to ``outputPromise`` unless the final handler fails, and
|
||
|
may be delayed if the final handler returns a promise.
|
||
|
|
||
|
```javascript
|
||
|
var outputPromise = getInputPromise()
|
||
|
.fin(function () {
|
||
|
// close files, database connections, stop servers, conclude tests
|
||
|
});
|
||
|
```
|
||
|
|
||
|
- If the handler returns a value, the value is ignored
|
||
|
- If the handler throws an error, the error passes to ``outputPromise``
|
||
|
- If the handler returns a promise, ``outputPromise`` gets postponed. The
|
||
|
eventual value or error has the same effect as an immediate return
|
||
|
value or thrown error: a value would be ignored, an error would be
|
||
|
forwarded.
|
||
|
|
||
|
If you are writing JavaScript for modern engines only or using
|
||
|
CoffeeScript, you may use `finally` instead of `fin`.
|
||
|
|
||
|
### Chaining
|
||
|
|
||
|
There are two ways to chain promises. You can chain promises either
|
||
|
inside or outside handlers. The next two examples are equivalent.
|
||
|
|
||
|
```javascript
|
||
|
return getUsername()
|
||
|
.then(function (username) {
|
||
|
return getUser(username)
|
||
|
.then(function (user) {
|
||
|
// if we get here without an error,
|
||
|
// the value returned here
|
||
|
// or the exception thrown here
|
||
|
// resolves the promise returned
|
||
|
// by the first line
|
||
|
})
|
||
|
});
|
||
|
```
|
||
|
|
||
|
```javascript
|
||
|
return getUsername()
|
||
|
.then(function (username) {
|
||
|
return getUser(username);
|
||
|
})
|
||
|
.then(function (user) {
|
||
|
// if we get here without an error,
|
||
|
// the value returned here
|
||
|
// or the exception thrown here
|
||
|
// resolves the promise returned
|
||
|
// by the first line
|
||
|
});
|
||
|
```
|
||
|
|
||
|
The only difference is nesting. It’s useful to nest handlers if you
|
||
|
need to capture multiple input values in your closure.
|
||
|
|
||
|
```javascript
|
||
|
function authenticate() {
|
||
|
return getUsername()
|
||
|
.then(function (username) {
|
||
|
return getUser(username);
|
||
|
})
|
||
|
// chained because we will not need the user name in the next event
|
||
|
.then(function (user) {
|
||
|
return getPassword()
|
||
|
// nested because we need both user and password next
|
||
|
.then(function (password) {
|
||
|
if (user.passwordHash !== hash(password)) {
|
||
|
throw new Error("Can't authenticate");
|
||
|
}
|
||
|
});
|
||
|
});
|
||
|
}
|
||
|
```
|
||
|
|
||
|
|
||
|
### Combination
|
||
|
|
||
|
You can turn an array of promises into a promise for the whole,
|
||
|
fulfilled array using ``all``.
|
||
|
|
||
|
```javascript
|
||
|
return Q.all([
|
||
|
eventualAdd(2, 2),
|
||
|
eventualAdd(10, 20)
|
||
|
]);
|
||
|
```
|
||
|
|
||
|
If you have a promise for an array, you can use ``spread`` as a
|
||
|
replacement for ``then``. The ``spread`` function “spreads” the
|
||
|
values over the arguments of the fulfillment handler. The rejection handler
|
||
|
will get called at the first sign of failure. That is, whichever of
|
||
|
the received promises fails first gets handled by the rejection handler.
|
||
|
|
||
|
```javascript
|
||
|
function eventualAdd(a, b) {
|
||
|
return Q.spread([a, b], function (a, b) {
|
||
|
return a + b;
|
||
|
})
|
||
|
}
|
||
|
```
|
||
|
|
||
|
But ``spread`` calls ``all`` initially, so you can skip it in chains.
|
||
|
|
||
|
```javascript
|
||
|
return getUsername()
|
||
|
.then(function (username) {
|
||
|
return [username, getUser(username)];
|
||
|
})
|
||
|
.spread(function (username, user) {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
The ``all`` function returns a promise for an array of values. When this
|
||
|
promise is fulfilled, the array contains the fulfillment values of the original
|
||
|
promises, in the same order as those promises. If one of the given promises
|
||
|
is rejected, the returned promise is immediately rejected, not waiting for the
|
||
|
rest of the batch. If you want to wait for all of the promises to either be
|
||
|
fulfilled or rejected, you can use ``allSettled``.
|
||
|
|
||
|
```javascript
|
||
|
Q.allSettled(promises)
|
||
|
.then(function (results) {
|
||
|
results.forEach(function (result) {
|
||
|
if (result.state === "fulfilled") {
|
||
|
var value = result.value;
|
||
|
} else {
|
||
|
var reason = result.reason;
|
||
|
}
|
||
|
});
|
||
|
});
|
||
|
```
|
||
|
|
||
|
The ``any`` function accepts an array of promises and returns a promise that is
|
||
|
fulfilled by the first given promise to be fulfilled, or rejected if all of the
|
||
|
given promises are rejected.
|
||
|
|
||
|
```javascript
|
||
|
Q.any(promises)
|
||
|
.then(function (first) {
|
||
|
// Any of the promises was fulfilled.
|
||
|
}, function (error) {
|
||
|
// All of the promises were rejected.
|
||
|
});
|
||
|
```
|
||
|
|
||
|
### Sequences
|
||
|
|
||
|
If you have a number of promise-producing functions that need
|
||
|
to be run sequentially, you can of course do so manually:
|
||
|
|
||
|
```javascript
|
||
|
return foo(initialVal).then(bar).then(baz).then(qux);
|
||
|
```
|
||
|
|
||
|
However, if you want to run a dynamically constructed sequence of
|
||
|
functions, you'll want something like this:
|
||
|
|
||
|
```javascript
|
||
|
var funcs = [foo, bar, baz, qux];
|
||
|
|
||
|
var result = Q(initialVal);
|
||
|
funcs.forEach(function (f) {
|
||
|
result = result.then(f);
|
||
|
});
|
||
|
return result;
|
||
|
```
|
||
|
|
||
|
You can make this slightly more compact using `reduce`:
|
||
|
|
||
|
```javascript
|
||
|
return funcs.reduce(function (soFar, f) {
|
||
|
return soFar.then(f);
|
||
|
}, Q(initialVal));
|
||
|
```
|
||
|
|
||
|
Or, you could use the ultra-compact version:
|
||
|
|
||
|
```javascript
|
||
|
return funcs.reduce(Q.when, Q(initialVal));
|
||
|
```
|
||
|
|
||
|
### Handling Errors
|
||
|
|
||
|
One sometimes-unintuitive aspect of promises is that if you throw an
|
||
|
exception in the fulfillment handler, it will not be caught by the error
|
||
|
handler.
|
||
|
|
||
|
```javascript
|
||
|
return foo()
|
||
|
.then(function (value) {
|
||
|
throw new Error("Can't bar.");
|
||
|
}, function (error) {
|
||
|
// We only get here if "foo" fails
|
||
|
});
|
||
|
```
|
||
|
|
||
|
To see why this is, consider the parallel between promises and
|
||
|
``try``/``catch``. We are ``try``-ing to execute ``foo()``: the error
|
||
|
handler represents a ``catch`` for ``foo()``, while the fulfillment handler
|
||
|
represents code that happens *after* the ``try``/``catch`` block.
|
||
|
That code then needs its own ``try``/``catch`` block.
|
||
|
|
||
|
In terms of promises, this means chaining your rejection handler:
|
||
|
|
||
|
```javascript
|
||
|
return foo()
|
||
|
.then(function (value) {
|
||
|
throw new Error("Can't bar.");
|
||
|
})
|
||
|
.fail(function (error) {
|
||
|
// We get here with either foo's error or bar's error
|
||
|
});
|
||
|
```
|
||
|
|
||
|
### Progress Notification
|
||
|
|
||
|
It's possible for promises to report their progress, e.g. for tasks that take a
|
||
|
long time like a file upload. Not all promises will implement progress
|
||
|
notifications, but for those that do, you can consume the progress values using
|
||
|
a third parameter to ``then``:
|
||
|
|
||
|
```javascript
|
||
|
return uploadFile()
|
||
|
.then(function () {
|
||
|
// Success uploading the file
|
||
|
}, function (err) {
|
||
|
// There was an error, and we get the reason for error
|
||
|
}, function (progress) {
|
||
|
// We get notified of the upload's progress as it is executed
|
||
|
});
|
||
|
```
|
||
|
|
||
|
Like `fail`, Q also provides a shorthand for progress callbacks
|
||
|
called `progress`:
|
||
|
|
||
|
```javascript
|
||
|
return uploadFile().progress(function (progress) {
|
||
|
// We get notified of the upload's progress
|
||
|
});
|
||
|
```
|
||
|
|
||
|
### The End
|
||
|
|
||
|
When you get to the end of a chain of promises, you should either
|
||
|
return the last promise or end the chain. Since handlers catch
|
||
|
errors, it’s an unfortunate pattern that the exceptions can go
|
||
|
unobserved.
|
||
|
|
||
|
So, either return it,
|
||
|
|
||
|
```javascript
|
||
|
return foo()
|
||
|
.then(function () {
|
||
|
return "bar";
|
||
|
});
|
||
|
```
|
||
|
|
||
|
Or, end it.
|
||
|
|
||
|
```javascript
|
||
|
foo()
|
||
|
.then(function () {
|
||
|
return "bar";
|
||
|
})
|
||
|
.done();
|
||
|
```
|
||
|
|
||
|
Ending a promise chain makes sure that, if an error doesn’t get
|
||
|
handled before the end, it will get rethrown and reported.
|
||
|
|
||
|
This is a stopgap. We are exploring ways to make unhandled errors
|
||
|
visible without any explicit handling.
|
||
|
|
||
|
|
||
|
### The Beginning
|
||
|
|
||
|
Everything above assumes you get a promise from somewhere else. This
|
||
|
is the common case. Every once in a while, you will need to create a
|
||
|
promise from scratch.
|
||
|
|
||
|
#### Using ``Q.fcall``
|
||
|
|
||
|
You can create a promise from a value using ``Q.fcall``. This returns a
|
||
|
promise for 10.
|
||
|
|
||
|
```javascript
|
||
|
return Q.fcall(function () {
|
||
|
return 10;
|
||
|
});
|
||
|
```
|
||
|
|
||
|
You can also use ``fcall`` to get a promise for an exception.
|
||
|
|
||
|
```javascript
|
||
|
return Q.fcall(function () {
|
||
|
throw new Error("Can't do it");
|
||
|
});
|
||
|
```
|
||
|
|
||
|
As the name implies, ``fcall`` can call functions, or even promised
|
||
|
functions. This uses the ``eventualAdd`` function above to add two
|
||
|
numbers.
|
||
|
|
||
|
```javascript
|
||
|
return Q.fcall(eventualAdd, 2, 2);
|
||
|
```
|
||
|
|
||
|
|
||
|
#### Using Deferreds
|
||
|
|
||
|
If you have to interface with asynchronous functions that are callback-based
|
||
|
instead of promise-based, Q provides a few shortcuts (like ``Q.nfcall`` and
|
||
|
friends). But much of the time, the solution will be to use *deferreds*.
|
||
|
|
||
|
```javascript
|
||
|
var deferred = Q.defer();
|
||
|
FS.readFile("foo.txt", "utf-8", function (error, text) {
|
||
|
if (error) {
|
||
|
deferred.reject(new Error(error));
|
||
|
} else {
|
||
|
deferred.resolve(text);
|
||
|
}
|
||
|
});
|
||
|
return deferred.promise;
|
||
|
```
|
||
|
|
||
|
Note that a deferred can be resolved with a value or a promise. The
|
||
|
``reject`` function is a shorthand for resolving with a rejected
|
||
|
promise.
|
||
|
|
||
|
```javascript
|
||
|
// this:
|
||
|
deferred.reject(new Error("Can't do it"));
|
||
|
|
||
|
// is shorthand for:
|
||
|
var rejection = Q.fcall(function () {
|
||
|
throw new Error("Can't do it");
|
||
|
});
|
||
|
deferred.resolve(rejection);
|
||
|
```
|
||
|
|
||
|
This is a simplified implementation of ``Q.delay``.
|
||
|
|
||
|
```javascript
|
||
|
function delay(ms) {
|
||
|
var deferred = Q.defer();
|
||
|
setTimeout(deferred.resolve, ms);
|
||
|
return deferred.promise;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
This is a simplified implementation of ``Q.timeout``
|
||
|
|
||
|
```javascript
|
||
|
function timeout(promise, ms) {
|
||
|
var deferred = Q.defer();
|
||
|
Q.when(promise, deferred.resolve);
|
||
|
delay(ms).then(function () {
|
||
|
deferred.reject(new Error("Timed out"));
|
||
|
});
|
||
|
return deferred.promise;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
Finally, you can send a progress notification to the promise with
|
||
|
``deferred.notify``.
|
||
|
|
||
|
For illustration, this is a wrapper for XML HTTP requests in the browser. Note
|
||
|
that a more [thorough][XHR] implementation would be in order in practice.
|
||
|
|
||
|
[XHR]: https://github.com/montagejs/mr/blob/71e8df99bb4f0584985accd6f2801ef3015b9763/browser.js#L29-L73
|
||
|
|
||
|
```javascript
|
||
|
function requestOkText(url) {
|
||
|
var request = new XMLHttpRequest();
|
||
|
var deferred = Q.defer();
|
||
|
|
||
|
request.open("GET", url, true);
|
||
|
request.onload = onload;
|
||
|
request.onerror = onerror;
|
||
|
request.onprogress = onprogress;
|
||
|
request.send();
|
||
|
|
||
|
function onload() {
|
||
|
if (request.status === 200) {
|
||
|
deferred.resolve(request.responseText);
|
||
|
} else {
|
||
|
deferred.reject(new Error("Status code was " + request.status));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
function onerror() {
|
||
|
deferred.reject(new Error("Can't XHR " + JSON.stringify(url)));
|
||
|
}
|
||
|
|
||
|
function onprogress(event) {
|
||
|
deferred.notify(event.loaded / event.total);
|
||
|
}
|
||
|
|
||
|
return deferred.promise;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
Below is an example of how to use this ``requestOkText`` function:
|
||
|
|
||
|
```javascript
|
||
|
requestOkText("http://localhost:3000")
|
||
|
.then(function (responseText) {
|
||
|
// If the HTTP response returns 200 OK, log the response text.
|
||
|
console.log(responseText);
|
||
|
}, function (error) {
|
||
|
// If there's an error or a non-200 status code, log the error.
|
||
|
console.error(error);
|
||
|
}, function (progress) {
|
||
|
// Log the progress as it comes in.
|
||
|
console.log("Request progress: " + Math.round(progress * 100) + "%");
|
||
|
});
|
||
|
```
|
||
|
|
||
|
#### Using `Q.Promise`
|
||
|
|
||
|
This is an alternative promise-creation API that has the same power as
|
||
|
the deferred concept, but without introducing another conceptual entity.
|
||
|
|
||
|
Rewriting the `requestOkText` example above using `Q.Promise`:
|
||
|
|
||
|
```javascript
|
||
|
function requestOkText(url) {
|
||
|
return Q.Promise(function(resolve, reject, notify) {
|
||
|
var request = new XMLHttpRequest();
|
||
|
|
||
|
request.open("GET", url, true);
|
||
|
request.onload = onload;
|
||
|
request.onerror = onerror;
|
||
|
request.onprogress = onprogress;
|
||
|
request.send();
|
||
|
|
||
|
function onload() {
|
||
|
if (request.status === 200) {
|
||
|
resolve(request.responseText);
|
||
|
} else {
|
||
|
reject(new Error("Status code was " + request.status));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
function onerror() {
|
||
|
reject(new Error("Can't XHR " + JSON.stringify(url)));
|
||
|
}
|
||
|
|
||
|
function onprogress(event) {
|
||
|
notify(event.loaded / event.total);
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
```
|
||
|
|
||
|
If `requestOkText` were to throw an exception, the returned promise would be
|
||
|
rejected with that thrown exception as the rejection reason.
|
||
|
|
||
|
### The Middle
|
||
|
|
||
|
If you are using a function that may return a promise, but just might
|
||
|
return a value if it doesn’t need to defer, you can use the “static”
|
||
|
methods of the Q library.
|
||
|
|
||
|
The ``when`` function is the static equivalent for ``then``.
|
||
|
|
||
|
```javascript
|
||
|
return Q.when(valueOrPromise, function (value) {
|
||
|
}, function (error) {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
All of the other methods on a promise have static analogs with the
|
||
|
same name.
|
||
|
|
||
|
The following are equivalent:
|
||
|
|
||
|
```javascript
|
||
|
return Q.all([a, b]);
|
||
|
```
|
||
|
|
||
|
```javascript
|
||
|
return Q.fcall(function () {
|
||
|
return [a, b];
|
||
|
})
|
||
|
.all();
|
||
|
```
|
||
|
|
||
|
When working with promises provided by other libraries, you should
|
||
|
convert it to a Q promise. Not all promise libraries make the same
|
||
|
guarantees as Q and certainly don’t provide all of the same methods.
|
||
|
Most libraries only provide a partially functional ``then`` method.
|
||
|
This thankfully is all we need to turn them into vibrant Q promises.
|
||
|
|
||
|
```javascript
|
||
|
return Q($.ajax(...))
|
||
|
.then(function () {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
If there is any chance that the promise you receive is not a Q promise
|
||
|
as provided by your library, you should wrap it using a Q function.
|
||
|
You can even use ``Q.invoke`` as a shorthand.
|
||
|
|
||
|
```javascript
|
||
|
return Q.invoke($, 'ajax', ...)
|
||
|
.then(function () {
|
||
|
});
|
||
|
```
|
||
|
|
||
|
|
||
|
### Over the Wire
|
||
|
|
||
|
A promise can serve as a proxy for another object, even a remote
|
||
|
object. There are methods that allow you to optimistically manipulate
|
||
|
properties or call functions. All of these interactions return
|
||
|
promises, so they can be chained.
|
||
|
|
||
|
```
|
||
|
direct manipulation using a promise as a proxy
|
||
|
-------------------------- -------------------------------
|
||
|
value.foo promise.get("foo")
|
||
|
value.foo = value promise.put("foo", value)
|
||
|
delete value.foo promise.del("foo")
|
||
|
value.foo(...args) promise.post("foo", [args])
|
||
|
value.foo(...args) promise.invoke("foo", ...args)
|
||
|
value(...args) promise.fapply([args])
|
||
|
value(...args) promise.fcall(...args)
|
||
|
```
|
||
|
|
||
|
If the promise is a proxy for a remote object, you can shave
|
||
|
round-trips by using these functions instead of ``then``. To take
|
||
|
advantage of promises for remote objects, check out [Q-Connection][].
|
||
|
|
||
|
[Q-Connection]: https://github.com/kriskowal/q-connection
|
||
|
|
||
|
Even in the case of non-remote objects, these methods can be used as
|
||
|
shorthand for particularly-simple fulfillment handlers. For example, you
|
||
|
can replace
|
||
|
|
||
|
```javascript
|
||
|
return Q.fcall(function () {
|
||
|
return [{ foo: "bar" }, { foo: "baz" }];
|
||
|
})
|
||
|
.then(function (value) {
|
||
|
return value[0].foo;
|
||
|
});
|
||
|
```
|
||
|
|
||
|
with
|
||
|
|
||
|
```javascript
|
||
|
return Q.fcall(function () {
|
||
|
return [{ foo: "bar" }, { foo: "baz" }];
|
||
|
})
|
||
|
.get(0)
|
||
|
.get("foo");
|
||
|
```
|
||
|
|
||
|
|
||
|
### Adapting Node
|
||
|
|
||
|
If you're working with functions that make use of the Node.js callback pattern,
|
||
|
where callbacks are in the form of `function(err, result)`, Q provides a few
|
||
|
useful utility functions for converting between them. The most straightforward
|
||
|
are probably `Q.nfcall` and `Q.nfapply` ("Node function call/apply") for calling
|
||
|
Node.js-style functions and getting back a promise:
|
||
|
|
||
|
```javascript
|
||
|
return Q.nfcall(FS.readFile, "foo.txt", "utf-8");
|
||
|
return Q.nfapply(FS.readFile, ["foo.txt", "utf-8"]);
|
||
|
```
|
||
|
|
||
|
If you are working with methods, instead of simple functions, you can easily
|
||
|
run in to the usual problems where passing a method to another function—like
|
||
|
`Q.nfcall`—"un-binds" the method from its owner. To avoid this, you can either
|
||
|
use `Function.prototype.bind` or some nice shortcut methods we provide:
|
||
|
|
||
|
```javascript
|
||
|
return Q.ninvoke(redisClient, "get", "user:1:id");
|
||
|
return Q.npost(redisClient, "get", ["user:1:id"]);
|
||
|
```
|
||
|
|
||
|
You can also create reusable wrappers with `Q.denodeify` or `Q.nbind`:
|
||
|
|
||
|
```javascript
|
||
|
var readFile = Q.denodeify(FS.readFile);
|
||
|
return readFile("foo.txt", "utf-8");
|
||
|
|
||
|
var redisClientGet = Q.nbind(redisClient.get, redisClient);
|
||
|
return redisClientGet("user:1:id");
|
||
|
```
|
||
|
|
||
|
Finally, if you're working with raw deferred objects, there is a
|
||
|
`makeNodeResolver` method on deferreds that can be handy:
|
||
|
|
||
|
```javascript
|
||
|
var deferred = Q.defer();
|
||
|
FS.readFile("foo.txt", "utf-8", deferred.makeNodeResolver());
|
||
|
return deferred.promise;
|
||
|
```
|
||
|
|
||
|
### Long Stack Traces
|
||
|
|
||
|
Q comes with optional support for “long stack traces,” wherein the `stack`
|
||
|
property of `Error` rejection reasons is rewritten to be traced along
|
||
|
asynchronous jumps instead of stopping at the most recent one. As an example:
|
||
|
|
||
|
```js
|
||
|
function theDepthsOfMyProgram() {
|
||
|
Q.delay(100).done(function explode() {
|
||
|
throw new Error("boo!");
|
||
|
});
|
||
|
}
|
||
|
|
||
|
theDepthsOfMyProgram();
|
||
|
```
|
||
|
|
||
|
usually would give a rather unhelpful stack trace looking something like
|
||
|
|
||
|
```
|
||
|
Error: boo!
|
||
|
at explode (/path/to/test.js:3:11)
|
||
|
at _fulfilled (/path/to/test.js:q:54)
|
||
|
at resolvedValue.promiseDispatch.done (/path/to/q.js:823:30)
|
||
|
at makePromise.promise.promiseDispatch (/path/to/q.js:496:13)
|
||
|
at pending (/path/to/q.js:397:39)
|
||
|
at process.startup.processNextTick.process._tickCallback (node.js:244:9)
|
||
|
```
|
||
|
|
||
|
But, if you turn this feature on by setting
|
||
|
|
||
|
```js
|
||
|
Q.longStackSupport = true;
|
||
|
```
|
||
|
|
||
|
then the above code gives a nice stack trace to the tune of
|
||
|
|
||
|
```
|
||
|
Error: boo!
|
||
|
at explode (/path/to/test.js:3:11)
|
||
|
From previous event:
|
||
|
at theDepthsOfMyProgram (/path/to/test.js:2:16)
|
||
|
at Object.<anonymous> (/path/to/test.js:7:1)
|
||
|
```
|
||
|
|
||
|
Note how you can see the function that triggered the async operation in the
|
||
|
stack trace! This is very helpful for debugging, as otherwise you end up getting
|
||
|
only the first line, plus a bunch of Q internals, with no sign of where the
|
||
|
operation started.
|
||
|
|
||
|
In node.js, this feature can also be enabled through the Q_DEBUG environment
|
||
|
variable:
|
||
|
|
||
|
```
|
||
|
Q_DEBUG=1 node server.js
|
||
|
```
|
||
|
|
||
|
This will enable long stack support in every instance of Q.
|
||
|
|
||
|
This feature does come with somewhat-serious performance and memory overhead,
|
||
|
however. If you're working with lots of promises, or trying to scale a server
|
||
|
to many users, you should probably keep it off. But in development, go for it!
|
||
|
|
||
|
## Tests
|
||
|
|
||
|
You can view the results of the Q test suite [in your browser][tests]!
|
||
|
|
||
|
[tests]: https://rawgithub.com/kriskowal/q/v1/spec/q-spec.html
|
||
|
|
||
|
## License
|
||
|
|
||
|
Copyright 2009–2017 Kristopher Michael Kowal and contributors
|
||
|
MIT License (enclosed)
|
||
|
|