天津投入产出系统后端
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

247 lines
7.5 KiB

/**
* K-Dimension Tree
*
* @module echarts/data/KDTree
* @author Yi Shen(https://github.com/pissang)
*/
define(function (require) {
var quickSelect = require('./quickSelect');
function Node(axis, data) {
this.left = null;
this.right = null;
this.axis = axis;
this.data = data;
}
/**
* @constructor
* @alias module:echarts/data/KDTree
* @param {Array} points List of points.
* each point needs an array property to repesent the actual data
* @param {Number} [dimension]
* Point dimension.
* Default will use the first point's length as dimensiont
*/
var KDTree = function (points, dimension) {
if (!points.length) {
return;
}
if (!dimension) {
dimension = points[0].array.length;
}
this.dimension = dimension;
this.root = this._buildTree(points, 0, points.length - 1, 0);
// Use one stack to avoid allocation
// each time searching the nearest point
this._stack = [];
// Again avoid allocating a new array
// each time searching nearest N points
this._nearstNList = [];
};
/**
* Resursively build the tree
*/
KDTree.prototype._buildTree = function (points, left, right, axis) {
if (right < left) {
return null;
}
var medianIndex = Math.floor((left + right) / 2);
medianIndex = quickSelect(
points, left, right, medianIndex,
function (a, b) {
return a.array[axis] - b.array[axis];
}
);
var median = points[medianIndex];
var node = new Node(axis, median);
axis = (axis + 1) % this.dimension;
if (right > left) {
node.left = this._buildTree(points, left, medianIndex - 1, axis);
node.right = this._buildTree(points, medianIndex + 1, right, axis);
}
return node;
};
/**
* Find nearest point
* @param {Array} target Target point
* @param {Function} squaredDistance Squared distance function
* @return {Array} Nearest point
*/
KDTree.prototype.nearest = function (target, squaredDistance) {
var curr = this.root;
var stack = this._stack;
var idx = 0;
var minDist = Infinity;
var nearestNode = null;
if (curr.data !== target) {
minDist = squaredDistance(curr.data, target);
nearestNode = curr;
}
if (target.array[curr.axis] < curr.data.array[curr.axis]) {
// Left first
curr.right && (stack[idx++] = curr.right);
curr.left && (stack[idx++] = curr.left);
}
else {
// Right first
curr.left && (stack[idx++] = curr.left);
curr.right && (stack[idx++] = curr.right);
}
while (idx--) {
curr = stack[idx];
var currDist = target.array[curr.axis] - curr.data.array[curr.axis];
var isLeft = currDist < 0;
var needsCheckOtherSide = false;
currDist = currDist * currDist;
// Intersecting right hyperplane with minDist hypersphere
if (currDist < minDist) {
currDist = squaredDistance(curr.data, target);
if (currDist < minDist && curr.data !== target) {
minDist = currDist;
nearestNode = curr;
}
needsCheckOtherSide = true;
}
if (isLeft) {
if (needsCheckOtherSide) {
curr.right && (stack[idx++] = curr.right);
}
// Search in the left area
curr.left && (stack[idx++] = curr.left);
}
else {
if (needsCheckOtherSide) {
curr.left && (stack[idx++] = curr.left);
}
// Search the right area
curr.right && (stack[idx++] = curr.right);
}
}
return nearestNode.data;
};
KDTree.prototype._addNearest = function (found, dist, node) {
var nearestNList = this._nearstNList;
// Insert to the right position
// Sort from small to large
for (var i = found - 1; i > 0; i--) {
if (dist >= nearestNList[i - 1].dist) {
break;
}
else {
nearestNList[i].dist = nearestNList[i - 1].dist;
nearestNList[i].node = nearestNList[i - 1].node;
}
}
nearestNList[i].dist = dist;
nearestNList[i].node = node;
};
/**
* Find nearest N points
* @param {Array} target Target point
* @param {number} N
* @param {Function} squaredDistance Squared distance function
* @param {Array} [output] Output nearest N points
*/
KDTree.prototype.nearestN = function (target, N, squaredDistance, output) {
if (N <= 0) {
output.length = 0;
return output;
}
var curr = this.root;
var stack = this._stack;
var idx = 0;
var nearestNList = this._nearstNList;
for (var i = 0; i < N; i++) {
// Allocate
if (!nearestNList[i]) {
nearestNList[i] = {};
}
nearestNList[i].dist = 0;
nearestNList[i].node = null;
}
var currDist = squaredDistance(curr.data, target);
var found = 0;
if (curr.data !== target) {
found++;
this._addNearest(found, currDist, curr);
}
if (target.array[curr.axis] < curr.data.array[curr.axis]) {
// Left first
curr.right && (stack[idx++] = curr.right);
curr.left && (stack[idx++] = curr.left);
}
else {
// Right first
curr.left && (stack[idx++] = curr.left);
curr.right && (stack[idx++] = curr.right);
}
while (idx--) {
curr = stack[idx];
var currDist = target.array[curr.axis] - curr.data.array[curr.axis];
var isLeft = currDist < 0;
var needsCheckOtherSide = false;
currDist = currDist * currDist;
// Intersecting right hyperplane with minDist hypersphere
if (found < N || currDist < nearestNList[found - 1].dist) {
currDist = squaredDistance(curr.data, target);
if (
(found < N || currDist < nearestNList[found - 1].dist)
&& curr.data !== target
) {
if (found < N) {
found++;
}
this._addNearest(found, currDist, curr);
}
needsCheckOtherSide = true;
}
if (isLeft) {
if (needsCheckOtherSide) {
curr.right && (stack[idx++] = curr.right);
}
// Search in the left area
curr.left && (stack[idx++] = curr.left);
}
else {
if (needsCheckOtherSide) {
curr.left && (stack[idx++] = curr.left);
}
// Search the right area
curr.right && (stack[idx++] = curr.right);
}
}
// Copy to output
for (var i = 0; i < found; i++) {
output[i] = nearestNList[i].node.data;
}
output.length = found;
return output;
};
return KDTree;
});